Selasa, 10 April 2012

Tugas 8 Menghitung IP Address

Matakuliah Jaringan Informasi Digital

Yang Dibimbing Bapak Moh.Syafi'i, S.T

Oleh Achmad Qorni Novianto

Program Studi D3 Perpustakaan UM

100213300531


Soal :

IP ADDRES : 172.168.11.5

NETMARK : 255.255.255.240

Hitung

a. Net ID

b. Broadcast ID

c. Range IP Address yang bisa di pakai



a. “Mencari Network ID = IP Address AND Network “

IP ADDRESS

172.168.11.5

10101100.10101000.00001011.00000101

NETMASK

255.255.255.240

11111111.11111111.11111111.11110000

Mencari NETWORK ID

10101100.10101000.00001011.00000101

11111111.11111111.11111111.11110000 AND

10101100.10101000.00001011.00000000

NET ID : 172.168.11.0



b. “Mencari Broadcast ID = IP Address OR ˜Netmask

RESERVE NETMASK

11111111.11111111.11111111.11110000

--- 00000000.00000000.00000000.00001111


10101100.10101000.00001011.00000101

00000000.00000000.00000000.00001111 OR

10101100.10101000.0000011.00001111

BROADCAST ID : 172.168.11.15



c. Range IP Address yang dapat digunakan adalah antara 172.168.11.1 – 172.168.11.14

Kamis, 22 Maret 2012

Tugas 7 IP Address and Subnetting

Kelompok 3 :

Achmad Qorni Novianto
Estu Ilma Hapsari
Fitriyah
Iswanto
Tri Lilik Subiyanti


Mengenal IP Address dan Subnetting


IP ADDRESS

Seperti kita ketahui bersama, internet adalah jaringan raksasa di dunia, Lalu pasti akan timbul pertanyaan bagaimana computer-komputer yang terhubung dalam jaringan dapat saling mengenal antara satu dengan lainnya? Hal ini dapat dipecahkan dengan masing-masing computer yang dapat diakses oleh pemakai internet yang memiliki alamat IP (Internet Protocol) yang bersifat unik. Dalam hal ini, alamat IP tidak ada yang sama pada setiap komputer.


Gambar 1. IP Address



Bagaimana mengetahui IP Address saya?
http://www.youtube.com/watch?v=z8MVx9OZS-U



Gambar 2. Mengetahui IP Address


Internet Protocol (IP) address adalah alamat numerik yang ditetapkan untuk sebuah komputer yang berpartisipasi dalam jaringan komputer yang memanfaatkan Internet Protocol untuk komunikasi antara node-nya. IP Address terdiri atas 32 bit (biary digit atau bilangan duaan) angka biner yang dibagi dalam 4 oket (byte) terdiri dari 8 bit. Setiap bit mempresentasikan bilangan desimal mulai dari 0 sampai 255.

Walaupun alamat IP disimpan sebagai angka biner, mereka biasanya ditampilkan agar memudahkan manusia menggunakan notasi, seperti 208.77.188.166 (untuk IPv4), dan 2001: db8: 0:1234:0:567:1:1 (untuk IPv6). Peran alamat IP adalah sebagai berikut: "Sebuah nama menunjukkan apa yang kita mencari. Sebuah alamat menunjukkan di mana ia berada. Sebuah route menunjukkan bagaimana menuju ke sana."

Perancang awal dari TCP/IP menetapkan sebuah alamat IP sebagai nomor 32-bit, dan sistem ini, yang kini bernama Internet Protocol Version 4 (IPv4), masih digunakan hari ini. Namun, karena pertumbuhan yang besar dari Internet dan penipisan yang terjadi pada alamat IP, dikembangkan sistem baru (IPv6), menggunakan 128 bit untuk alamat, dikembangkan pada tahun 1995 dan terakhir oleh standar RFC 2460 pada tahun 1998.

Internet Protocol juga memiliki tugas routing paket data antara jaringan, alamat IP dan menentukan lokasi dari node sumber dan node tujuan dalam topologi dari sistem routing. Untuk tujuan ini, beberapa bit pada alamat IP yang digunakan untuk menunjuk sebuah subnetwork. Jumlah bit ini ditunjukkan dalam notasi CIDR, yang ditambahkan ke alamat IP, misalnya, 208.77.188.166/24.

Dengan pengembangan jaringan pribadi / private network, alamat IPv4 menjadi kekurangan, sekelompok alamat IP private dikhususkan oleh RFC 1918. Alamat IP private ini dapat digunakan oleh siapa saja di jaringan pribadi / private network. Mereka sering digunakan dengan Network Address Translation (NAT) untuk menyambung ke Internet umum global.
Internet Assigned Numbers Authority (IANA) yang mengelola alokasi alamat IP global. IANA bekerja bekerja sama dengan lima Regional Internet Registry (RIR) mengalokasikan blok alamat IP lokal ke Internet Registries (penyedia layanan Internet) dan lembaga lainnya.

Pada penggunaan IP Address, yg harus kita ketahui yaitu:
1. IP Address
2. Subnetmask
3. IP Network
4. IP Broadcast
5. IP Gateway
6. DNS Primary
7. DNS Secondary

Jenis-jenis IP Address terdiri dari :

1. IP Public

Public bit tertinggi range address bit network address
kelas A 0 0 – 127* 8
kelas B 10 128 – 191 16
kelas C 110 192 – 223 24
kelas D 1110 224 – 239 28

2. Privat

IP Privat ini dapat digunakan dengan bebas tetapi tidak dikenal pada jaringan internet global. Karena itu biasa dipergunakan pada jaringan tertutup yang tidak terhubung ke internet, misalnya jaringan komputer ATM.
10.0.0.0 – 10.255.255.255
172.16.0.0 – 172.31.255.255
192.168.0.0 – 192.168.255.255

Kesimpulan

1.0.0.0 – 126.0.0.0 : Kelas A.
127.0.0.0 : Loopback network.
128.0.0.0 – 191.255.0.0 : Kelas B.
192.0.0.0 – 223.255.255.0 : Kelas C.
224.0.0.0 = 240.0.0.0 : Class E, reserved.

3. IPv6

Terdiri dari 16 oktet, contoh :
A524:72D3:2C80:DD02:0029:EC7A:002B:EA73
IP Address yang diberikan dari ISP adalah 160.100.0.0/16

Apabila kita menggunakan subneting biasa maka akan mudah di dapatkan akan tetapi hasil dari subneting (seperti contoh 1) tersebut akan terbuang sia-sia karena hasil dari subneting terlalu banyak daripada jumlah host yang dibutuhkan. Maka diperlukan perhitingan VLSM yaitu :

a. Urutan kebutuhan host yang diperlukan

1. Departemen E = 500 host
2. Departemen C = 325 host
3. Departemen A = 100 host
4. Departemen B = 57 host
5. Departemen F = 25 host
6. Departemen D = 9 host

b. Ubah menjadi biner

network-portion host-portion
10100000 01100100 00000000 00000000
11111111 11111111 00000000 00000000
Jika pada subneting dimabil dari network maka pada VLSM diambil pada dari host
l Untuk 500 host
network-portion host-portion
10100000 01100100 00000000 00000000
11111111 11111111 00000000 00000000
Untuk 500 host dimabil 9 bit dari host-portion karena
2n-2 > jumlah host
Hasilnya 160.100.0.0/23
Network Broadcast Range-Hoat
160.100.0.0/23 160.100.0.255 160.100.0.1 – 160.100.1.254
160.100.2.0/23 160.100.2.255 160.100.2.1 – 160.100.3.254
160.100.4.0/23 160.100.4.255 160.100.4.1 – 160.100.5.254
160.100.6.0/23 160.100.6.255 160.100.6.1 – 160.100.7.254
160.100.8.0/23 160.100.8.255 160.100.8.1 – 160.100.9.254
…….. ………. ………….
160.100.254.0/23 160.100.254.255 160.100.254.1 – 160.100.255.254
l Untuk 325 host kita masih dapat menggunakan subnet dari 500 host karena masih dalam arena 29 dan pilihlah subnet yang belum digunakan.
l Untuk 100 host menggunakan 28 > 100 dan ambil salah satu dari subnet sebelumnya yang belum terpakai.
misal 160.100.2.0/24
network-portion host-portion
10100000 01100100 00000010 00000000
11111111 11111111 00000010 00000000
maka
Network Broadcast Range-Hoat
160.100.2.0/24 160.100.2.255 160.100.2.1 – 160.100.2.254
160.100.3.0/24 160.100.3.255 160.100.3.1 – 160.100.3.254
l Untuk 57 host menggunakan 26 >57 dan ambil salah satu dari subnet sebelumnya yang belum terpakai.
misal 160.100.3.0/24
network-portion host-portion
10100000 01100100 00000010 00000000
11111111 11111111 00000011 00000000
maka
Network Broadcast Range-Hoat
160.100.3.0/26 160.100.3.91 160.100.3.1 – 160.100.3.90
160.100.3.64/26 160.100.3.63 160.100.3.65 – 160.100.3.126
160.100.3.128/26 160.100.3.127 160.100.3.129 – 160.100.3.190
160.100.3.192/26 160.100.3.191 160.100.3.193 – 160.100.3.254
l Untuk 25 host menggunakan 25 > 25 dan ambil salah satu dari subnet sebelumnya yang belum terpakai.
misal 160.100.3.192/25
network-portion host-portion
10100000 01100100 00000010 00000000
11111111 11111111 00000011 00000000
maka
Network Broadcast Range-Hoat
160.100.3.192/27 160.100.3.223 160.100.3.193 – 160.100.3.222
160.100.3.224/27 160.100.3.255 160.100.3.225 – 160.100.3.254
l Untuk 9 host menggunakan 24 > 16 dan ambil salah satu dari subnet sebelumnya yang belum terpakai.
misal 160.100.3.224/25
network-portion host-portion
10100000 01100100 00000010 00000000
11111111 11111111 00000011 00000000
maka
Network Broadcast Range-Hoat
160.100.3.224/28 160.100.3.239 160.100.3.225 – 160.100.3.227
160.100.3.240/28 160.100.3.255 160.100.3.241 – 160.100.3.254

Kelas-kelas IP address


IP address dibagi menjadi lima kelas, A sampai E. IP address yang dipakai secara umum dibagi dalam 3 kelas, sementara 2 kelas lainnya dipakai untuk kepentingan khusus. Ini untuk memudahkan pendistribusian IP address ke seluruh dunia. IP kelas ini dialokasikan untuk jaringan berukuran kecil.

Kelas A :

• Format : 0nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh
• Bit pertama : 0
• Panjang Network ID : 8 bit
• Panjang Host ID : 24 bit
• Byte pertama : 0 – 127
• Jumlah : 126 kelas A (0 dan 127 dicadangkan)
• Range IP : 1.xxx.xxx.xxx sampai 126.xxx.xxx.xxx
• Jumlah IP : 16.777.214 IP address pada tiap kelas A

IP address kelas ini diberikan kepada suatu jaringan yang berukuran sangat besar, yang pada tiap jaringannya terdapat sekitar 16 juta host.

Kelas B :

• Format : 10nnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh
• 2 bit pertama : 10
• Panjang Network ID : 16 bit
• Panjang Host ID : 16 bit
• Byte pertama : 128 – 191
• Jumlah : 16.384 kelas B
• Range IP : 128.0.xxx.xxx sampai 191.155.xxx.xxx
• Jumlah IP : 65.535 IP address pada tiap kelas B

IP address kelas ini diberikan kepada jaringan dengan ukuran sedang-besar. Contohnya adalah jaringan kampus ITB yang mendapat alokasi IP address kelas B (terima kasih kepada Onno W. Purbo), dengan network id 167.205.

Kelas C :

• Format : 110nnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh
• 3 bit pertama : 110
• Panjang Network ID : 24 bit
• Panjang Host ID : 8 bit
• Byte pertama : 192 – 223
• Jumlah : 2.097.152 kelas C
• Range IP : 192.0.0.xxx sampai 223.255.255.xxx
• Jumlah IP : 254 IP address pada tiap kelas C

Sedangkan 2 Kelas IP yang lain digunakan untuk kepentingan khusus. IP kelas D digunakan sebagai alamat multicast yaitu sejumlah komputer memakai bersama suatu aplikasi. Contohnya adalah aplikasi real-time video conference yang melibatkan lebih dari dua host, seperti yang diadakan di ITB dalam program SOI (School on Internet) bersama beberapa universitas di Asia. Ciri IP kelas D adalah 4 bit pertamanya 1110. IP kelas E (4 bit pertama 1111) dialokasikan untuk keperluan eksperimental.

Yang perlu diperhatikan dalam pemilihan IP address

Aturan dasar pemilihan Network ID dan Host ID :
• Network ID tidak boleh bernilai 127. Karena Network ID 127 digunakan sebagai alamat loopback yaitu alamat yang digunakan komputer untuk menunjuk dirinya sendiri.
• Network ID dan Host ID tidak boleh seluruhnya bernilai 255 (seluruh bit diset 1). Nework ID atau Host ID yang seluruhnya bernilai 255 adalah alamat broadcast jaringan tersebut. Apabila dikirimkan pesan kepada alamt broadcast maka seluruh host pada jaringan tersebut akan menerima pesan itu.
• Network ID dan Host ID tidak boleh seluruhnya bernilai 0 (seluruh bit diset 0). Alamat IP dengan host id semuanya bernilai 0 diartikan sebagai alamat network yang menunjuk ke jaringan, bukan ke host.
• Host ID harus unik dalam satu network.

Cara Menghitung IP

Cara membaca :
Kombinasi angka tersebut adalah untuk netmask 255.255.255.0 yang apabila di konversi ke Bilangan Biner adalah 11111111.11111111.11111111.00000000. Kita ambil 8 bit terakhir yaitu .00000000.
Apabila pada kolom pertama di beri nilai ’1′ dan yg lainnya bernilai ’0′ ( .10000000 ) maka
1. Jumlah IP yang kita miliki (tersedia) sebanyak 128 nomor
2. Netmask yang harus dipakai adalah 255.255.255.128
3. Kita dapat menuliskan IP tersebut 192.168.0.0/25 dengan 25 sebagai nilai prefix-nya.
4. Jumlah segmen yang terbentuk sebanyak 2 yaitu
192.168.0.0 - 192.168.0.127 -> sesuai dgn point 1. IP yang tersedia sebanyak 128 buah tiap segmen 192.168.0.128 - 192.168.0.255
5. Jumlah IP yang dapat dipakai untuk host sebanyak 126 setelah dikurangi dengan Net-ID dan Broadcast .

Mengenali IPv4

IPv4 terdiri dari 5 kelas, yaitu :

1. Kelas A (1 bit pertama IP Address-nya “0”)

Merupakan alamat unicast untuk jaringan skala besar. Nomor urut bit tertinggi di dalam alamat IP kelas A selalu diset dengan nilai 0 (nol). Tujuh bit berikutnya—untuk melengkapi oktet pertama—akan membuat sebuah network identifier. 24 bit sisanya (atau tiga oktet terakhir) merepresentasikan host identifier. Ini mengizinkan kelas A memiliki hingga 126 jaringan, dan 16,777,214 host tiap jaringannya. Alamat dengan oktet awal 127 tidak diizinkan, karena digunakan untuk mekanisme Interprocess Communication (IPC) di dalam mesin yang bersangkutan.

2. Kelas B (2 bit pertama IP Address-nya “10”)

Merupakan alamat unicast untuk jaringan skala menengah hingga skala besar. Dua bit pertama di dalam oktet pertama alamat IP kelas B selalu diset ke bilangan biner 10. 14 bit berikutnya (untuk melengkapi dua oktet pertama), akan membuat sebuah network identifier. 16 bit sisanya (dua oktet terakhir) merepresentasikan host identifier. Kelas B dapat memiliki 16,384 network, dan 65,534 host untuk setiap network-nya.

3. Kelas C (3 bit pertama IP Address-nya “110”)

Merupakan alamat unicast untuk jaringan skala kecil. Tiga bit pertama di dalam oktet pertama alamat kelas C selalu diset ke nilai biner 110. 21 bit selanjutnya (untuk melengkapi tiga oktet pertama) akan membentuk sebuah network identifier. 8 bit sisanya (sebagai oktet terakhir) akan merepresentasikan host identifier. Ini memungkinkan pembuatan total 2,097,152 buah network, dan 254 host untuk setiap network-nya.

4. Kelas D (4 bit pertama IP Address-nya “1110”)

Merupakan alamat multicast (bukan alamat unicast). sehingga berbeda dengan tiga kelas di atas. Empat bit pertama di dalam IP kelas D selalu diset ke bilangan biner 1110. 28 bit sisanya digunakan sebagai alamat yang dapat digunakan untuk mengenali host. Untuk lebih jelas mengenal alamat ini, lihat pada bagian Alamat Multicast IPv4.

5. Kelas E (4 bit pertama IP Address-nya “1111”)

Pada umumnya digunakan sebagai alamat percobaan (eksperimen)dan dicadangkan untuk digunakan pada masa depan. Empat bit pertama selalu diset kepada bilangan biner 1111. 28 bit sisanya digunakan sebagai alamat yang dapat digunakan untuk mengenali host.

Aturan dasar dalam menentukan network ID dan host ID yang akan digunakan :

1. Network ID 127.0.0.1 tidak dapat digunakan karena ia secara default digunakan dalam keperluan ‘loop-back’.(‘Loopback’ adalah IP address yang digunakan komputer untuk menunjuk dirinya sendiri).

2. Host ID tidak boleh semua bitnya diset 1 (contoh klas A: 126.255.255.255), karena akan diartikan sebagai alamat broadcast. ID broadcast merupakan alamat yang mewakili seluruh anggota jaringan. Pengiriman paket ke alamat ini akan
menyebabkan paket ini didengarkan oleh seluruh anggota network tersebut.

3. Network ID dan host ID tidak boleh sama dengan 0 (seluruh bit diset 0 seperti 0.0.0.0), karena IP address dengan host ID 0 diartikan sebagai alamat network. Alamat network adalah alamat yang digunakan untuk menunjuk suatu jaringan, dan
tidak menunjukan suatu host.

4. Host ID harus unik dalam suatu network (dalam satu network, tidak boleh ada dua host dengan host ID yang sama).

Gambar 3. IPv4



Subnetting



Mengenal Subnetting

Subnetting adalah teknik memecah suatu jaringan besar menjadi jaringan yang lebih kecil dengan cara mengorbankan bit Host ID pada subnet mask untuk dijadikan Network ID baru.


Gambar 4. Tabel Subnetting

Sedangkan tujuan dari subnetting adalah sebagai berikut:
1. Untuk mengefisienkan pengalamatan (misal untuk jaringan yang hanya mempunyai 10 host, kalau kita menggunakan kelas C saja terdapat 254 - 10 =244 alamat yang tidak terpakai).
2.Membagi satu kelas netwok atas sejumlah subnetwork dengan arti membagi suatu kelas jaringan menjadi bagian-bagian yang lebih kecil.
3.Menempatkan suatu host, apakah berada dalam satu jaringan atau tidak.
4.Untuk mengatasi masalah perbedaaan hardware dengan topologi fisik jaringan.

Dapat dicontohkan seperti dibawah ini :

Ada sebuah jalan bernama Gatot Subroto terdiri dari beberapa rumah bernomor 01-08, dengan rumah nomor 08 adalah rumah Ketua RT yang memiliki tugas mengumumkan informasi apapun kepada seluruh rumah di wilayah Jl. Gatot Subroto.



Gambar 5. Contoh Subnetting


Ketika rumah di wilayah itu makin banyak, tentu kemungkinan menimbulkan keruwetan dan kemacetan. Karena itulah kemudian diadakan pengaturan lagi, dibuat gang-gang, rumah yang masuk ke gang diberi nomor rumah baru, masing-masing gang ada Ketua RTnya sendiri-sendiri. Sehingga ini akan memecahkan kemacetan, efiesiensi dan optimalisasi transportasi, serta setiap gang memiliki previledge sendiri-sendiri dalam mengelola wilayahnya. Jadilah gambar wilayah baru seperti di bawah:


Gambar 6. Contoh Subnetting

Konsep seperti inilah sebenarnya konsep subnetting itu. Disatu sisi ingin mempermudah pengelolaan, misalnya suatu kantor ingin membagi kerja menjadi 3 divisi dengan masing-masing divisi memiliki 15 komputer (host). Disisi lain juga untuk optimalisasi dan efisiensi kerja jaringan, karena jalur lalu lintas tidak terpusat di satu network besar, tapi terbagi ke beberapa ruas-ruas gang. Yang pertama analogi Jl Gatot Subroto dengan rumah disekitarnya dapat diterapkan untuk jaringan adalah seperti NETWORK ADDRESS (nama jalan) dan HOST ADDRESS (nomer rumah). Sedangkan Ketua RT diperankan oleh BROADCAST ADDRESS (192.168.1.255), yang bertugas mengirimkan message ke semua host yang ada di network tersebut.


Gambar 7. Contoh Subnetting

Masih mengikuti analogi jalan diatas, kita terapkan ke subnetting jaringan adalah seperti gambar di bawah. Gang adalah SUBNET, masing-masing subnet memiliki HOST ADDRESS dan BROADCAST ADDRESS.

Gambar 8. Contoh Subnetting


Terus apa itu SUBNET MASK? Subnetmask digunakan untuk membaca bagaimana kita membagi jalan dan gang, atau membagi network dan hostnya. Address mana saja yang berfungsi sebagai SUBNET, mana yang HOST dan mana yang BROADCAST. Semua itu bisa kita ketahui dari SUBNET MASKnya. Jl Gatot Subroto tanpa gang yang saya tampilkan di awal bisa dipahami sebagai menggunakan SUBNET MASK DEFAULT, atau dengan kata lain bisa disebut juga bahwa Network tersebut tidak memiliki subnet (Jalan tanpa Gang). SUBNET MASK DEFAULT ini untuk masing-masing Class IP Address adalah sbb:

Gambar 9. Subnet Mask Default


Penulisan IP address umumnya adalah dengan 192.168.1.2. Namun adakalanya ditulis dengan 192.168.1.2/24, apa ini artinya? Artinya bahwa IP address 192.168.1.2 dengan subnet mask 255.255.255.0. Lho kok bisa seperti itu? Ya, /24 diambil dari penghitungan bahwa 24 bit subnet mask diselubung dengan binari 1. Atau dengan kata lain, subnet masknya adalah: 11111111.11111111.11111111.00000000 (255.255.255.0). Konsep ini yang disebut dengan CIDR (Classless Inter-Domain Routing) yang diperkenalkan pertama kali tahun 1992 oleh IEFT.
Subnet Mask yang bisa digunakan untuk melakukan subnetting,lihat tabel di bawah:



Gambar 10. Subnet Mask


SUBNETTING PADA IP ADDRESS CLASS C

NETWORK ADDRESS 192.168.1.0/26
Analisa:
192.168.1.0 berarti kelas C dengan Subnet Mask /26 berarti 11111111.11111111.11111111.11000000 (255.255.255.192).

Penghitungan:
Seperti yang disebutkan sebelumnya semua pertanyaan tentang subnetting akan berpusat di 4 hal, jumlah subnet, jumlah host per subnet, blok subnet, alamat host dan broadcast yang valid. Jadi kita selesaikan dengan urutan seperti itu:

1. Jumlah Subnet = 2x, dimana x adalah banyaknya binari 1 pada oktet terakhir subnet mask (2 oktet terakhir untuk kelas B, dan 3 oktet terakhir untuk kelas A). Jadi Jumlah Subnet adalah 22 = 4 subnet

2. Jumlah Host per Subnet = 2y – 2, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada oktet terakhir subnet. Jadi jumlah host per subnet adalah 26 – 2 = 62 host

3. Blok Subnet = 256 – 192 (nilai oktet terakhir subnet mask) = 64. Subnet berikutnya adalah 64 + 64 = 128, dan 128+64=192. Jadi total subnetnya adalah 0, 64, 128, 192.

4. Bagaimana dengan alamat host dan broadcast yang valid? Kita langsung buat tabelnya. Sebagai catatan, host pertama adalah 1 angka setelah subnet, dan broadcast adalah 1 angka sebelum subnet berikutnya.


Gambar 11. Subnetting pada IP Address Kelas C


Kita sudah selesaikan subnetting untuk IP address Class C. Dan kita bisa melanjutkan lagi untuk subnet mask yang lain, dengan konsep dan teknik yang sama. Subnet mask yang bisa digunakan untuk subnetting class C adalah:
Subnet Mask Nilai CIDR


Gambar 12. Subnet Mask


SUBNETTING PADA IP ADDRESS CLASS B

Berikutnya kita akan mencoba melakukan subnetting untuk IP address class B. Pertama, subnet mask yang bisa digunakan untuk subnetting class B adalah:

Subnet Mask Nilai CIDR


Gambar 13. Subnet Mask

NETWORK ADDRESS 172.16.0.0/18.

Analisa:
172.16.0.0 berarti kelas B, dengan Subnet Mask /18 berarti 11111111.11111111.11000000.00000000 (255.255.192.0).
Penghitungan:
1. Jumlah Subnet = 2x, dimana x adalah banyaknya binari 1 pada 2 oktet terakhir. Jadi Jumlah Subnet adalah 22 = 4 subnet
2. Jumlah Host per Subnet = 2y – 2, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada 2 oktet terakhir. Jadi jumlah host per subnet adalah 214 – 2 = 16.382 host
3. Blok Subnet = 256 – 192 = 64. Subnet berikutnya adalah 64 + 64 = 128, dan 128+64=192. Jadi total subnetnya adalah 0, 64, 128, 192.
4. Alamat host dan broadcast yang valid?


Gambar 14. NETWORK ADDRESS 172.16.0.0/18.

SUBNETTING PADA IP ADDRESS CLASS A

Kalau sudah mantab dan paham, kita lanjut ke Class A. Konsepnya semua sama saja. Perbedaannya adalah di OKTET mana kita mainkan blok subnet. Kalau Class C di oktet ke 4 (terakhir), kelas B di Oktet 3 dan 4 (2 oktet terakhir), kalau Class A di oktet 2, 3 dan 4 (3 oktet terakhir). Kemudian subnet mask yang bisa digunakan untuk subnetting class A adalah semua subnet mask dari CIDR /8 sampai /30.
NETWORK ADDRESS 10.0.0.0/16.
Analisa:
10.0.0.0 berarti kelas A, dengan Subnet Mask /16 berarti 11111111.11111111.00000000.00000000 (255.255.0.0).
Penghitungan:
1. Jumlah Subnet = 28 = 256 subnet
2. Jumlah Host per Subnet = 216 – 2 = 65534 host
3. Blok Subnet = 256 – 255 = 1. Jadi subnet lengkapnya: 0,1,2,3,4, etc.
4. Alamat host dan broadcast yang valid?


Gambar 15. Subnetting pada IP Address Kelas A

Rumusnya adalah sebagai berikut :
a) Jumlah subnet = 2x
b) Jumlah Host per Subnet = 2y – 2
c) Blok Subnet = kelipatan dari 256 – n

Keterangan dari rumus :
x = jumlah dari banyaknya biner 1 pada oktat terakhir subnetmask
y = jumlah dari banyaknya biner 0 pada oktat terakhir subnetmask
n = nilai angka desimal pada oktat terakhir subnetmask

Latihan materi subnetting versi Indonesia
http://www.youtube.com/watch?v=0oeED8rqUK4

Materi Subnetting
http://www.youtube.com/watch?v=apE45g7LxJo
http://www.youtube.com/watch?v=gD5WkqNmb78&feature=fvwrel
http://www.youtube.com/watch?v=9_TioAloonI&feature=relmfu
http://www.youtube.com/watch?v=wWjNiq-w9b8&feature=relmfu
http://www.youtube.com/watch?v=sSAjpho8_84&feature=relmfu


Source :

http://idur.staff.uns.ac.id/2009/05/15/penghitungan-subnetting/
http://www.catatanteknisi.com/2011/02/mengenal-teknik-subnetting.html
http://tasmi.unsri.ac.id/index.php/posting/5
http://ubun2.isgreat.org/index.php/jaringan/49-menghitung-subnetting
http://pfv-tkj.blogspot.com/2011/09/perhitungan-subnetting.html
http://trisuliswanto.blogspot.com/2010/01/perhitungan-ip-address.html
http://ubun2.isgreat.org/index.php/jaringan/48-perhitungan-dan-aturan-aturan-ip-address
http://chapila.com/komputer/cara-ganti-ip-address-komputer.html

Selasa, 06 Maret 2012

Tugas Kuliah 6 PRA UTS

Achmad Qorni Novianto
100213300531
D3 Perpustakaan UM

Tugas Mandiri Pra UTS
Mata Kuliah Jaringan Informasi Digital
dibimbing oleh Bapak M. Syafi'i, S.T


1. Pengertian dan Jenis Protokol Jaringan Komputer


Protokol komunikasi atau biasa disebut protocol saja, adalah suatu tata cara yang digunakan untuk melaksanakan pertukaran data (pesan) antara dua buah sistem dalam jaringan (Kadir, 2003:426). Protokol adalah sebuah aturan atau standar yang mengatur atau mengijinkan terjadinya hubungan, komunikasi, dan perpindahan data antara dua atau lebih titik komputer.

Dalam hal ini, kedua sistem bisa saja berbeda sekali. Protokol ini, mengurusi perbedaan format data pada kedua system hingga pada masalah koneksi listrik. Protokol dapat diterapkan pada perangkat keras, perangkat lunak atau kombinasi dari keduanya. Pada tingkatan yang terendah, protokol mendefinisikan koneksi perangkat keras. Protokol digunakan untuk menentukan jenis layanan yang akan dilakukan pada internet.

Dibawah ini adalah beberapa jenis Protokol Jaringan Komputer, diantaranya adalah :

a. TCP/IP (singkatan dari Transmission Control Protocol/Internet Protocol)

Protokol jenis ini merupakan standar komunikasi data yang digunakan oleh komunitas internet dalam proses tukar-menukar data dari satu komputer ke komputer lain di dalam jaringan Internet. Protokol ini tidaklah dapat berdiri sendiri, karena memang protokol ini berupa kumpulan protokol (protocol suite). Protokol ini juga merupakan protokol yang paling banyak digunakan saat ini. Data tersebut diimplementasikan dalam bentuk perangkat lunak (software) di sistem operasi. Istilah yang diberikan kepada perangkat lunak ini adalah TCP/IP stack.

Protokol TCP/IP dikembangkan pada akhir dekade 1970-an hingga awal 1980-an sebagai sebuah protokol standar untuk menghubungkan komputer-komputer dan jaringan untuk membentuk sebuah jaringan yang luas (WAN). TCP/IP merupakan sebuah standar jaringan terbuka yang bersifat independen terhadap mekanisme transport jaringan fisik yang digunakan, sehingga dapat digunakan di mana saja. Protokol ini menggunakan skema pengalamatan yang sederhana yang disebut sebagai alamat IP (IP Address) yang mengizinkan hingga beberapa ratus juta komputer untuk dapat saling berhubungan satu sama lainnya di Internet. Protokol ini juga bersifat routable yang berarti protokol ini cocok untuk menghubungkan sistem-sistem berbeda (seperti Microsoft Windows dan keluarga UNIX) untuk membentuk jaringan yang heterogen.

Protokol TCP/IP selalu berevolusi seiring dengan waktu, mengingat semakin banyaknya kebutuhan terhadap jaringan komputer dan Internet. Pengembangan ini dilakukan oleh beberapa badan, seperti halnya Internet Society (ISOC), Internet Architecture Board (IAB), dan Internet Engineering Task Force (IETF). Macam-macam protokol yang berjalan di atas TCP/IP, skema pengalamatan, dan konsep TCP/IP didefinisikan dalam dokumen yang disebut sebagai Request for Comments (RFC) yang dikeluarkan oleh IETF.

Protokol Komunikasi TCP/IP

Pada TCP/IP terdapat beberapa protokol sub yang menangani masalah komunikasi antar komputer. TCP/IP mengimplemenasikan arsitektur berlapis yang terdiri atas empat lapis, diantaranya adalah :


Gambar 1. TCP/IP

1. Application Layer
Bertanggung jawab untuk menyediakan akses kepada aplikasi terhadap layanan jaringan TCP/IP. Protokol ini mencakup protokol Dynamic Host Configuration Protocol (DHCP), Domain Name System (DNS), Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Telnet, Simple Mail Transfer Protocol (SMTP), Simple Network Management Protocol (SNMP), dan masih banyak protokol lainnya. Dalam beberapa implementasi stack protokol, seperti halnya Microsoft TCP/IP, protokol-protokol lapisan aplikasi berinteraksi dengan menggunakan antarmuka Windows Sockets (Winsock) atau NetBIOS over TCP/IP (NetBT).

2. Transport Layer
Berguna untuk membuat komunikasi menggunakan sesi koneksi yang bersifat connection-oriented atau broadcast yang bersifat connectionless. Protokol dalam lapisan ini adalah Transmission Control Protocol (TCP) dan User Datagram Protocol (UDP).

3. Layer Internetwork
Bertanggung jawab untuk melakukan pemetaan (routing) dan enkapsulasi paket-paket data jaringan menjadi paket-paket IP. Protokol yang bekerja dalam lapisan ini adalah Internet Protocol (IP), Address Resolution Protocol (ARP), Internet Control Message Protocol (ICMP), dan Internet Group Management Protocol (IGMP).

4. Layer Network Interface
Bertanggung jawab untuk meletakkan frame-frame jaringan di atas media jaringan yang digunakan. TCP/IP dapat bekerja dengan banyak teknologi transport, mulai dari teknologi transport dalam LAN (seperti halnya Ethernet dan Token Ring), MAN dan WAN (seperti halnya dial-up modem yang berjalan di atas Public Switched Telephone Network (PSTN), Integrated Services Digital Network (ISDN), serta Asynchronous Transfer Mode (ATM).

DNS

Domain Name System (DNS) adalah distribute database system yang digunakan untuk pencarian nama komputer (name resolution) di jaringan yang mengunakan TCP/IP (Transmission Control Protocol/Internet Protocol). DNS biasa digunakan pada aplikasi yang terhubung ke Internet seperti web browser atau e-mail, dimana DNS membantu memetakan host name sebuah komputer ke IP address. Selain digunakan di Internet, DNS juga dapat di implementasikan ke private network atau intranet dimana DNS memiliki keunggulan seperti:

• Mudah, DNS sangat mudah karena user tidak lagi direpotkan untuk mengingat IP address sebuah komputer cukup host name (nama Komputer).
• Konsisten, IP address sebuah komputer bisa berubah tapi host name tidak berubah.
• Simple, user hanya menggunakan satu nama domain untuk mencari baik di Internet maupun di Intranet.

Gambar 2. DNS

Struktur DNS

Domain Name Space merupakan sebuah hirarki pengelompokan domain berdasarkan nama, yang terbagi menjadi beberapa bagian diantaranya adalah :

• Root-Level Domains
Domain ditentukan berdasarkan tingkatan kemampuan yang ada di struktur hirarki yang disebut dengan
level. Level paling atas di hirarki disebut dengan root domain. Root domain di ekspresikan berdasarkan periode dimana lambang untuk root domain adalah (“.”).

• Top-Level Domains
Pada bagian dibawah ini adalah contoh dari top-level domains :
1. .com Organisasi Komersial
2. .edu Institusi pendidikan atau universitas
3. .org Organisasi non-profit
4. .net Networks (backbone Internet)
5. .gov Organisasi pemerintah non militer
6. .mil Organisasi pemerintah militer
7. .num No telpon
8. .arpa Reverse DNS
9. .xx dua-huruf untuk kode Negara (id:indonesia.my:malaysia,au:australia)
Top-level domains dapat berisi second-level domains dan hosts.

• Second-Level Domains
Second-level domains dapat berisi host dan domain lain, yang disebut dengan subdomain. Untuk contoh:
Domain Bujangan, bujangan.com terdapat komputer (host) seperti server1.bujangan.com dan subdomain training.bujangan.com. Subdomain training.bujangan.com juga terdapat komputer (host) seperti client1.training.bujangan.com.

• Host Names
Domain name yang digunakan dengan host name akan menciptakan fully qualified domain name (FQDN) untuk setiap komputer. Sebagai contoh, jika terdapat fileserver1.detik.com, dimana fileserver1 adalah host name dan detik.com adalah domain name.

Bagaimana DNS Bekerja

Fungsi dari DNS adalah menerjemahkan nama komputer ke IP address (memetakan). Client DNS disebut dengan resolvers dan DNS server disebut dengan name servers. Resolvers atau client mengirimkan permintaan ke name server berupa queries. Name server akan memproses dengan cara mencek ke local database DNS, menghubungi name server lainnya atau akan mengirimkan message failure jika ternyata permintaan dari client tidak ditemukan. Proses tersebut disebut dengan Forward Lookup Query, yaitu permintaan dari client dengan cara memetakan nama komputer (host) ke IP address.

Cara kerja Domain Name Sistem
• Resolvers mengirimkan queries ke name server.
• Name server mencek ke local database, atau menghubungi name server lainnya, jika ditemukan akan diberitahukan ke resolvers jika tidak akan mengirimkan failure message.
• Resolvers menghubungi host yang dituju dengan menggunakan IP address yang diberikan name server

b. User Datagram Protocol

UDP merupakan singkatan dari User Datagram Protocol, adalah salah satu protokol lapisan transpor TCP/IP yang mendukung komunikasi yang tidak andal (unreliable), tanpa koneksi (connectionless) antara host-host dalam jaringan yang menggunakan TCP/IP. Protokol ini didefinisikan dalam RFC 768.


Gambar 3. UDP

UDP memiliki karakteristik sebagai berikut :
• Connectionless (tanpa koneksi): Pesan-pesan UDP akan dikirimkan tanpa harus dilakukan proses negosiasi koneksi antara dua host yang hendak berukar informasi.
• Unreliable (tidak andal): Pesan-pesan UDP akan dikirimkan sebagai datagram tanpa adanya nomor urut atau pesan acknowledgment. Protokol lapisan aplikasi yang berjalan di atas UDP harus melakukan pemulihan terhadap pesan-pesan yang hilang selama transmisi. Umumnya, protokol lapisan aplikasi yang berjalan di atas UDP mengimplementasikan layanan keandalan mereka masing-masing, atau mengirim pesan secara periodik atau dengan menggunakan waktu yang telah didefinisikan.
• UDP menyediakan mekanisme untuk mengirim pesan-pesan ke sebuah protokol lapisan aplikasi atau proses tertentu di dalam sebuah host dalam jaringan yang menggunakan TCP/IP. Header UDP berisi field Source Process Identification dan Destination Process Identification.
• UDP menyediakan penghitungan checksum berukuran 16-bit terhadap keseluruhan pesan UDP.

UDP tidak menyediakan layanan-layanan antar-host berikut:
• UDP tidak menyediakan mekanisme penyanggaan (buffering) dari data yang masuk ataupun data yang keluar. Tugas buffering merupakan tugas yang harus diimplementasikan oleh protokol lapisan aplikasi yang berjalan di atas UDP.
• UDP tidak menyediakan mekanisme segmentasi data yang besar ke dalam segmen-segmen data, seperti yang terjadi dalam protokol TCP. Karena itulah, protokol lapisan aplikasi yang berjalan di atas UDP harus mengirimkan data yang berukuran kecil (tidak lebih besar dari nilai Maximum Transfer Unit/MTU) yang dimiliki oleh sebuah antarmuka di mana data tersebut dikirim. Karena, jika ukuran paket data yang dikirim lebih besar dibandingkan nilai MTU, paket data yang dikirimkan bisa saja terpecah menjadi beberapa fragmen yang akhirnya tidak jadi terkirim dengan benar.
• UDP tidak menyediakan mekanisme flow-control, seperti yang dimiliki oleh TCP.

PENGGUNAAN UDP
UDP sering digunakan dalam beberapa tugas berikut:
• Protokol yang "ringan" (lightweight): Untuk menghemat sumber daya memori dan prosesor, beberapa protokol lapisan aplikasi membutuhkan penggunaan protokol yang ringan yang dapat melakukan fungsi-fungsi spesifik dengan saling bertukar pesan. Contoh dari protokol yang ringan adalah fungsi query nama dalam protokol lapisan aplikasi Domain Name System.
• Protokol lapisan aplikasi yang mengimplementasikan layanan keandalan: Jika protokol lapisan aplikasi menyediakan layanan transfer data yang andal, maka kebutuhan terhadap keandalan yang ditawarkan oleh TCP pun menjadi tidak ada. Contoh dari protokol seperti ini adalah Trivial File Transfer Protocol (TFTP) dan Network File System (NFS).
• Protokol yang tidak membutuhkan keandalan. Contoh protokol ini adalah Protokol Routing Information Protocol (RIP).
• Transmisi broadcast: Karena UDP merupakan protokol yang tidak perlu membuat koneksi terlebih dahulu dengan sebuah host tertentu, maka transmisi broadcast pun dimungkinkan. Sebuah protokol lapisan aplikasi dapat mengirimkan paket data ke beberapa tujuan dengan menggunakan alamat multicast atau broadcast. Hal ini kontras dengan protokol TCP yang hanya dapat mengirimkan transmisi one-to-one. Contoh: query nama dalam protokol NetBIOS Name Service.

PESAN UDP
UDP berbeda dengan TCP yang memiliki satuan paket data yang disebut dengan segmen, melakukan pengepakan terhadap data ke dalam pesan-pesan UDP (UDP Messages). Sebuah pesan UDP berisi header UDP dan akan dikirimkan ke protokol lapisan selanjutnya (lapisan internetwork) setelah mengepaknya menjadi datagram IP. Enkapsulasi terhadap pesan-pesan UDP oleh protokol IP dilakukan dengan menambahkan header IP dengan protokol IP nomor 17 (0x11). Pesan UDP dapat memiliki besar maksimum 65507 byte: 65535 (216)-20 (ukuran terkecil dari header IP)-8 (ukuran dari header UDP) byte. Datagram IP yang dihasilkan dari proses enkapsulasi tersebut, akan dienkapsulasi kembali dengan menggunakan header dan trailer protokol lapisan Network Interface yang digunakan oleh host tersebut.

Dalam header IP dari sebuah pesan UDP, field Source IP Address akan diset ke antarmuka host yang mengirimkan pesan UDP yang bersangkutan; sementara field Destination IP Address akan diset ke alamat IP unicast dari sebuah host tertentu, alamat IP broadcast, atau alamat IP multicast.

PORT UDP
Seperti halnya TCP, UDP juga memiliki saluran untuk mengirimkan informasi antar host, yang disebut dengan UDP Port. Untuk menggunakan protokol UDP, sebuah aplikasi harus menyediakan alamat IP dan nomor UDP Port dari host yang dituju. Sebuah UDP port berfungsi sebagai sebuah multiplexed message queue, yang berarti bahwa UDP port tersebut dapat menerima beberapa pesan secara sekaligus. Setiap port diidentifikasi dengan nomor yang unik, seperti halnya TCP, tetapi meskipun begitu, UDP Port berbeda dengan TCP Port meskipun memiliki nomor port yang sama. Tabel di bawah ini mendaftarkan beberapa UDP port yang telah dikenal secara luas.


Gambar 4. Tabel UDP Port

c. Point-to-Point Protocol
Point-to-Point Protocol (sering disingkat menjadi PPP) adalah sebuah protokol enkapsulasi paket jaringan yang banyak digunakan pada wide area network (WAN). Protokol ini merupakan standar industri yang berjalan pada lapisan data-link dan dikembangkan pada awal tahun 1990-an sebagai respons terhadap masalah-masalah yang terjadi pada protokol Serial Line Internet Protocol (SLIP), yang hanya mendukung pengalamatan IP statis kepada para kliennya.

Dibandingkan dengan pendahulunya (SLIP), PPP jauh lebih baik, mengingat kerja protokol ini lebih cepat, menawarkan koreksi kesalahan, dan negosiasi sesi secara dinamis tanpa adanya intervensi dari pengguna. Selain itu, protokol ini juga mendukung banyak protokol-protokol jaringan secara simultan. PPP didefinisikan pada RFC 1661 dan RFC 1662.

d. Serial Line Internet Protocol

Serial Line Internet Protocol dianggap berkaitan erat dengan pengertian berikut
Disingkat dengan SLIP. Sebuah protokol yang memungkinkan pemindahan data IP melalui saluran telepon. Alat bantu lainnya dalam SLIP adalah PPP yang mendeteksi kesalahan dan konfigurasi. Sistem ini memerlukan satu komputer server sebagai penampungnya, dan secara perlahan-lahan akan digantikan oleh standar PPP yang memiliki kecepatan proses lebih tinggi.

e. Internet Control Message Protocol (ICMP)

ICMP berbeda tujuan dengan TCP dan UDP dalam hal ICMP tidak digunakan secara langsung oleh aplikasi jaringan milik pengguna. salah satu pengecualian adalah aplikasi ping yang mengirim pesan ICMP Echo Request (dan menerima Echo Reply) untuk menentukan apakah komputer tujuan dapat dijangkau dan berapa lama paket yang dikirimkan dibalas oleh komputer tujuan. protokol internet. ICMP utamanya digunakan oleh sistem operasi komputer jaringan untuk mengirim pesan kesalahan yang menyatakan, sebagai contoh, bahwa komputer tujuan tidak bisa dijangkau.

Gambar 5. ICMP

f. POP3 (Post Office Protocol)

POP3 adalah kepanjangan dari Post Office Protocol version 3, yakni protokol yang digunakan untuk mengambil email dari email server. Protokol POP3 dibuat karena desain dari sistem email yang mengharuskan adanya email server yang menampung email untuk sementara sampai email tersebut diambil oleh penerima yang berhak. Kehadiran email server ini disebabkan kenyataan hanya sebagian kecil dari komputer penerima email yang terus-menerus melakukan koneksi ke jaringan internet.

g. IMAP (Internet Message Access Protocol)

IMAP (Internet Message Access Protocol) adalah protokol standar untuk mengakses/mengambil e-mail dari server. IMAP memungkinkan pengguna memilih pesan e-mail yang akan ia ambil, membuat folder di server, mencari pesan e-mail tertentu, bahkan menghapus pesan e-mail yang ada. Kemampuan ini jauh lebih baik daripada POP (Post Office Protocol) yang hanya memperbolehkan kita mengambil/download semua pesan yang ada tanpa kecuali.

h. SMTP (Simple Mail Transfer Protocol)

SMTP adalah suatu protokol yang umum digunakan untuk pengiriman surat elektronik atau email di Internet. Protokol ini gunakan untuk mengirimkan data dari komputer pengirim surat elektronik ke server surat elektronik penerima.

Untuk menggunakan SMTP bisa dari Microsoft Outlook. biasanya untuk menggunakan SMTP di perlukan settingan :
1. Email Address : contoh —> anda@domainanda.com
2. Incoming Mail (POP3, IMAP or HTTP) server : mail.doaminanda.com
3. Outgoing (SMTP) server : mail.domainanda.com
4. Account Name : anda@domainanda.com
5. Password : password yang telah anda buat sebelumnya

i. HTTP (Hypertext Transfer Protocol)

HTTP (Hypertext Transfer Protocol) suatu protokol yang digunakan oleh WWW (World Wide Web). HTTP mendefinisikan bagaimana suatu pesan bisa diformat dan dikirimkan dari server ke client. HTTP juga mengatur aksi-aksi apa saja yang harus dilakukan oleh web server dan juga web browser sebagai respon atas perintah-perintah yang ada pada protokol HTTP ini.

Contohnya bila kita mengetikkan suatu alamat atau URL pada internet browser maka web browser akan mengirimkan perintah HTTP ke web server. Web server kemudian akan menerima perintah ini dan melakukan aktivitas sesuai dengan perintah yang diminta oleh web browser. Hasil aktivitas tadi akan dikirimkan kembali ke web browser untuk ditampilkan kepada kita.

j. HTTPS

https adalah versi aman dari HTTP, protokol komunikasi dari World Wide Web. Ditemukan oleh Netscape Communications Corporation untuk menyediakan autentikasi dan komunikasi tersandi dan penggunaan dalam komersi elektris.

Selain menggunakan komunikasi plain text, HTTPS menyandikan data sesi menggunakan protokol SSL (Secure Socket layer) atau protokol TLS (Transport Layer Security). Kedua protokol tersebut memberikan perlindungan yang memadai dari serangan eavesdroppers, dan man in the middle attacks. Pada umumnya port HTTPS adalah 443.


Gambar 6. HTTPS

Tingkat keamanan tergantung pada ketepatan dalam mengimplementasikan pada browser web dan perangkat lunak server dan didukung oleh algorithma penyandian yang aktual.
Oleh karena itu, pada halaman web digunakan HTTPS, dan URL yang digunakan dimulai dengan ‘https://’ bukan dengan ‘http://’.

Kesalahpahaman yang sering terjadi pada pengguna kartu kredit di web ialah dengan menganggap HTTPS “sepenuhnya” melindungi transaksi mereka. Sedangkan pada kenyataannya, HTTPS hanya melakukan enkripsi informasi dari kartu mereka antara browser mereka dengan web server yang menerima informasi. Pada web server, informasi kartu mereke secara tipikal tersimpan di database server (terkadang tidak langsung dikirimkan ke pemroses kartu kredit), dan server database inilah yang paling sering menjadi sasaran penyerangan oleh pihak-pihak yang tidak berkepentingan.

k. SSH (Sucure Shell)

SSH adalah protocol jaringan yang memungkinkan pertukaran data secara aman antara dua komputer. SSH dapat digunakan untuk mengendalikan komputer dari jarak jauh mengirim file, membuat Tunnel yang terrenkripsi dan lain-lain. Protocol ini mempunyai kelebihan disbanding protocol yang sejenis seperti Telnet, FTP, Danrsh, karena SSH memiliki system Otentikasi,Otorisasi, dan ekripsinya sendiri. Dengan begitu keamanan sebuah sesi komunikasi melalui bantuan SSH ini menjadi lebih terjamin. SSH memang lebih aman dibandingkan dengan protocol sejenis, tetapi protocol SSH tatap rentan terhadap beberapa jenis serangan tertentu.

Pada umumnya serangan ini ditunjukan Pada SSH versi pertama (SSH-1) yang memang memiliki tingkat keamanan yang lebih lemah daripada SSH versi kedua (SSH-2). Salah satu serangan pada SSH versi pertama adalah serangan MAN IN THE MIDDLE pada saat pertukaran kunci. Protocol SSH serta algoritma yang digunakan pada kedua versi SSH, lalu serangan-serangan yang terjadi pada SSH dan bagaimana SSH mengatasinya. Untuk meningkatkan keamanan pada protocol SSH dapat dilakukan dengan cara menggunakan kartu Kriptografi untuk autentifkasi.Telnet (Telecommunication network) adalah sebuah protokol jaringan yang digunakan di koneksi Internet atau Local Area Network. TELNET dikembangkan pada 1969 dan distandarisasi sebagai IETF STD 8, salah satu standar Internet pertama. TELNET memiliki beberapa keterbatasan yang dianggap sebagai risiko keamanan.

l. Telnet (Telecommunication network)

Telnet merupakan sebuah protokol jaringan yang digunakan di koneksi Internet atau Local Area Network. TELNET dikembangkan pada 1969 dan distandarisasi sebagai IETF STD 8, salah satu standar Internet pertama. TELNET memiliki beberapa keterbatasan yang dianggap sebagai risiko keamanan.

m. FTP ( File Transfer Protocol )

FTP ( File Transfer Protocol ) adalah sebuah protocol internet yang berjalan di dalam lapisan aplikasi yang merupakan standar untuk pentransferan berkas (file) computer antar mesin-mesin dalam sebuah internetwork. FTP atau protocol Transmission Control Protocol (TCP) untuk komunikasi data antara klien dan server, sehingga diantara kedua komponen tersebut akan dibuatlah sebuah sesi komunikasi sebelum transfer data dimulai. FTP hanya menggunakan metode autentikasi standar, yakni menggunakan User name dan paswordnya yang dikirim dalam bentuk tidak terenkripsi. Pengguana terdaftar dapat menggunakan username dan password-nya untuk mengakses ,men-dawnload ,dan meng- updlot berkas- berkas yang ia kehenaki. Umumnya, para pengguna daftar memiliki akses penuh terdapat berapa direkotri , sehingga mereka dapat berkas , memuat dikotri dan bahkan menghapus berkas. Pengguna yang belum terdaftar dapat juga menggunakan metode anonymous login,yakni dengan menggunakan nama pengguna anonymous & password yang diisi dengan menggunakan alamat e-mail. Sebuah server FTP diakses dengan menggunakan Universal Resource Identifier (URI) dengan menggunakan format ftp://namaserver. Klien FTP dapat menghubungi server FTP dengan membuka URI tersebut.

Tujuan FTP server adalah sebagai berikut :
1. Untuk men-sharing data.
2. Untuk menyediakan indirect atau implicit remote computer.
3. Untuk menyediakan tempat penyimpanan bagi User.
4. Untuk menyediakan tranper data yang reliable dan efisien.

FTP sebenarnya cara yang tidak aman untuk mentransfer file karena file tersebut ditransfesfer tanpa melalui enkripsi terlebih dahulu tapi melalui clear text. Metode text yang dipakai transfer data adalah format ASCII atau format binary. Secara Default, FTP menggunakan metode ASCII untuk transfer data. Karena Pengirimannya tanpa enkripsi, maka username,password,data yang ditransfer maupun perintah yang dikirim dapat dniffing oleh orang dengan menggunakan protocol analyzer (Sniffer). Solusi yang digunakan adalah dengan menggunakan SFTP (SSH FTP) yaitu FTP yang berbasis pada SSH atau menggunakan FTPS (FTP over SSL) sehingga data yang dikirim terlebih dahulu disana.

n. LDAP

LDAP (Lightweight Directory Access Protocol) adalah protokol perangkat lunak untuk memungkinkan semua orang mencari resource organisasi, perorangan dan lainnya, seperti file atau printer di dalam jaringan baik di internet atau intranet. Protokol LDAP membentuk sebuah direktori yang berisi hirarki pohon yang memiliki cabang, mulai dari negara (countries), organisasi, departemen sampai dengan perorangan. Dengan menggunakan LDAP, seseorang dapat mencari informasi mengenai orang lain tanpa mengetahui lokasi orang yang akan dicari itu.

o. SSL (Secure Socket Layer)
SSL (Secure Socket Layer) adalah arguably internet yang paling banyak digunakan untuk enkripsi. Ditambah lagi, SSL sigunakan tidak hanya keamanan koneksi web, tetapi untuk berbagai aplikasi yang memerlukan enkripsi jaringan end-to-end.

Secure Sockets Layer (SSL) merupakan sistem yang digunakan untuk mengenkripsipengiriman informasi pada internet, sehingga data dapat dikirim dengan aman. Protokol SSL mengatur keamanan dan integritas menggunakan enkripsi, autentikasi, dan kode autentikasi pesan. SSL protocol menyedian privasi komunikasi di internet. SSL tidak mendukung fileencryption, access-control, atau proteksi virus, jadi SSL tidak dapat membantu mengatur data sensitif setelah dan sebelum pengiriman yang aman.

Protokol SSL terdiri dari dua sub-protokol: SSL record protocol dan SSL handshake protocol. SSL record protocol mendefinisikan format yang digunakan untuk mentransmisikan data. Sedangkan SSL handshake protocol melibatkan SSL record protocol untuk menukarkan serangkaian pesan antara SSL enabled server dan SSL enable client ketika keduanya pertama kali melakukan koneksi SSL. Pertukaran pesan tersebut digunakan untuk memfasilitasi tindakan sebagai berikut :
• Autentikasi dari server ke klien
• Mengizinkan klien dan server untuk memilih algoritma kriptografi atau sandi, yang mendukung komunikasi keduanya.
• Autentikasi dari klien ke server.
• Menggunakan teknik enkripsi public key untuk membuka data yang dienkripsi
• Membuat enkripsi koneksi SSL.

2. Perbedaan antara TCP dan UDP


• TCP bersifat reliable berarti data ditransfer ke tujuannya dalam suatu urutan seperti ketika dikirim, sedangkan Unreliable (tidak andal): Pesan-pesan UDP akan dikirimkan sebagai datagram tanpa adanya nomor urut atau pesan acknowledgment.

• Berbeda dengan TCP, UDP merupakan connectionless dan tidak ada keandalan, windowing, serta fungsi untuk memastikan data diterima dengan benar. Namun, UDP juga menyediakan fungsi yang sama dengan TCP, seperti transfer data dan multiplexing, tetapi ia melakukannya dengan byte tambahan yang lebih sedikit dalam header UDP.

• UDP melakukan multiplexing UDP menggunakan cara yang sama seperti TCP. Satu-satunya perbedaan adalah transport protocol yang digunakan, yaitu UDP. Suatu aplikasi dapat membuka nomor port yang sama pada satu host, tetapi satu menggunakan TCP dan yang satu lagi menggunakan UDP—hal ini tidak biasa, tetapi diperbolehkan. Jika suatu layanan mendukung TCP dan UDP, ia menggunakan nilai yang sama untuk nomor port TCP dan UDP.

• UDP mempunyai keuntungan dibandingkan TCP dengan tidak menggunakan field sequence dan acknowledgement. Keuntungan UDP yang paling jelas dari TCP adalah byte tambahan yang lebih sedikit. Di samping itu, UDP tidak perlu menunggu penerimaan atau menyimpan data dalam memory sampai data tersebut diterima. Ini berarti, aplikasi UDP tidak diperlambat oleh proses penerimaan dan memory dapat dibebaskan lebih cepat. Pada tabel, Anda dapat melihat fungsi yang dilakukan (atau tidak dilakukan) oleh UDP atau TCP.

• UDP tidak menyediakan mekanisme segmentasi data yang besar kedalam segmen-segmen data, seperti yang terjadi dalam protocol TCP. Karena itu, protocol lapisan aplikasi yang berjalan diatas UDP harus mengirimkan data yang berukuran kecil (tidak lebih besar dari nilai Maximum Transfer Unit/MTU) yang dimiliki oleh sebuah antarmuka dimana data tersebut dikirim. Karena jika ukuran paket data yang dikirim lebih besar dibandingkan nilai MTU, paket data yang dikirimkan bisa saja terpecah menjadi beberapa fragmen yang akhirnya tidak terkirim dengan benar.

• UDP tidak menyediakan mekanisme flow and control, seperti yang dimiliki oleh TCP. TCP memiliki layanan flow control yang berguna untuk mencegah data terlalu banyak dikirimkan pada satu waktu, yang akhirnya membuat “macet” jaringan internetwork IP, TCP mengimplementasikan layanan flow control yang dimiliki oleh pihak pengirim yang secara terus menerus memantau dan membatasi jumlah data yang dikirimkan pada satu waktu.

• Heavyweight, pada TCP meminta tiga paket hanya untuk mensetup socket, sebelum beberapa data aktual dapat dikirimkan. Ini mengatur koneksi, reliability, dan congestion control. Lightweight, Pada UDP tidak ada pemesanan pesan, tidak ada pelacakan koneksi, dll.


Gambar 7. TCP vs UDP

3. Mekanisme koneksi antara 2 host menggunakan Protokol TCP.


Layer-layer dan protokol yang terdapat dalam arsitektur jaringan TCP/IP menggambarkan fungsi-fungsi dalam komunikasi antara dua buah komputer (2 host) . Setiap lapisan menerima data dari lapisan di atas atau dibawahnya, kemudian memproses data tersebut sesuai fungsi protokol yang dimilikinya dan meneruskannya ke lapisan berikutnya. Ketika dua komputer berkomunikasi, terjadi aliran data antara pengirim dan penerima melalui lapisan-lapisan di atas.

Pada pengirim, aliran data adalah dari atas ke bawah. Data dari user maupun suatu aplikasi dikirimkan ke Lapisan Transport dalam bentuk paket-paket dengan panjang tertentu. Protokol menambahkan sejumlah bit pada setiap paket sebagai header yang berisi informasi mengenai urutan segmentasi untuk menjaga integritas data dan bit-bit pariti untuk deteksi dan koreksi kesalahan. Dari Lapisan Transport, data yang telah diberi header tersebut diteruskan ke Lapisan Network / Internet. Pada lapisan ini terjadi penambahan header oleh protokol yang berisi informasi alamat tujuan, alamat pengirim dan informasi lain yang dibutuhkan untuk melakukan routing. Kemudian terjadi pengarahan routing data, yakni ke network dan interface yang mana data akan dikirimkan, jika terdapat lebih dari satu interface pada host. Pada lapisan ini juga dapat terjadi segmentasi data, karena panjang paket yang akan dikirimkan harus disesuaikan dengan kondisi media komunikasi pada network yang akan dilalui.

Selanjutnya data menuju Network Access Layer (Data Link) dimana data akan diolah menjadi frame-frame, menambahkan informasi keandalan dan address pada level link. Protokol pada lapisan ini menyiapkan data dalam bentuk yang paling sesuai untuk dikirimkan melalui media komunikasi tertentu. Terakhir data akan sampai pada Physical Layer yang akan mengirimkan data dalam bentuk besaran-besaran listrik/fisik seperti tegangan, arus, gelombang radio maupun cahaya, sesuai media yang digunakan.

Di bagian penerima, proses pengolahan data mirip seperti di atas hanya dalam urutan yang berlawanan (dari bawah ke atas). Sinyal yang diterima pada physical layer akan diubah dalam ke dalam data. Protokol akan memeriksa integritasnya dan jika tidak ditemukan error t header yang ditambahkan akan dilepas. Selanjutnya data diteruskan ke lapisan network. Pada lapisan ini, address tujuan dari paket data yang diterima akan diperiksa. Jika address tujuan merupakan address host yang bersangkutan, maka header lapisan network akan dicopot dan data akan diteruskan ke lapisan yang diatasnya. Namun jika tidak, data akan di forward ke network tujuannya, sesuai dengan informasi routing yang dimiliki. Pada lapisan Transport, kebenaran data akan diperiksa kembali, menggunakan informasi header yang dikirimkan oleh pengirim. Jika tidak ada kesalahan, paket-paket data yang diterima akan disusun kembali sesuai urutannya pada saat akan dikirim dan diteruskan ke lapisan aplikasi pada penerima.

Proses yang dilakukan pada tiap lapisan tersebut dikenal dengan istilah enkapsulasi data. Proses ini bersifat transparan. Maksudnya, pada suatu lapisan tidak perlu mengetahui ada berapa lapisan yang ada diatasnya maupun dibawahnya. Masing-masing hanya mengerjakan tugasnya. Pada pengirim, tugas ini adalah menerima data dari lapisan diatasnya, mengolah data tersebut sesuai dengan fungsi protocol, menambahkan header protocol dan meneruskan ke lapisan dibawahnya. Pada penerima, tugas ini adalah menerima data dari lapisan dibawahnya, mengolah data sesuai dengan fungsi protocol, mencopot header protocol tersebut dan meneruskannya ke lapisan yang ada diatasnya.


Gambar 8. Koneksi TCP

Video tentang koneksi TCP dapat dilihat pada link dibawah ini :



Sumber :
Kadir, Abdul dan Triwahyuni, Terra CH. 2003. Pengenalan Teknologi Informasi.
Yogyakarta: ANDI.
Tim Penelitian dan pengembangan. Konsep jaringan komputer dan pengembangannya.
Jakarta : Salemba Infotek, 2003
http://emperorkidz.blogspot.com/2011/02/pengertian-dan-jenis-protokol-jaringan.html
http://renyromanisti.blogspot.com/2011/04/perbedaan-tcp-dan-udp.html
http://blog.uad.ac.id/riyansintari/2011/04/11/tcp-osi-and-udp/
http://blog.uad.ac.id/hasni/2011/04/11/ciri-dan-perbedaan-dari-tcp-dan-udp/
http://prorebell.blogspot.com/2010/11/pengertian-tcp-dan-udp-serta.html
http://dedenbgenktugasprotocol.blogspot.com/2009/10/protocol-dan-macam-macam-protocol.html
http://www.jaringankomputer.org/pengertian-ftp-fungsi-ftp-carakerja-aplikasi-ftp/
http://www.jaringankomputer.org/protokol-jaringan/
http://jaringankomputer.comyr.com/pengertian-tcp-ip-konsep-dasar-dan-cara-kerja-layer-tc-ip/
http://videobelajar.com/koneksi-dengan-tcp-ipv4/